VH-IVUS and OCT Evidences of In-Stent Neoatherosclerosis A Mechanism of Stent Failure

Soo-Jin Kang MD., PhD.

University of Ulsan College of Medicine, Heart Institute Asan Medical Center, Seoul, Korea

Disclosure

I have nothing to disclose

Evidences of Neoatherosclerosis As a Mechanism of Late In-stent Restenosis

CardioVascular Research Foundation

Tri-phasic Luminal Response of BMS Extended Follow-up Study

late phase re-narrowing likely related to neoatherosclerosis beyond 3 years

Kimura et al. N Engl J Med 1996;334:561-6 Kimura et al. Circulation 2002;105:2986-91

"Late Catch-up" in DES Serial F/U of MLD Serial F/U %IH Volume

CardioVascular Research Foundation

a. IIII 5 Calatol 2010,105.140

Pathologic Definition of "Neoatherosclerosis"

Peri-strut foamy macrophage clusters with or without calcification, fibroatheroma, and ruptures with thrombosis in neointima, but no communication with underlying native atheroma

Hasegawa et al. Cathe and Cardiovasc Interv 2006;68:554–8 Inoue et al. Cardiovascular Pathology 2004;14:109–15

CardioVascular Research Foundation

Journal of the American College of Cardiology © 2011 by the American College of Cardiology Foundation Published by Elsevier Inc. Vol. 57, No. 11, 2011 ISSN 0735-1097/\$36.00 doi:10.1016/j.jacc.2011.01.011

EXPEDITED PUBLICATIONS

The Pathology of Neoatherosclerosis in Human Coronary Implants

Bare-Metal and Drug-Eluting Stents

Gaku Nakazawa, MD,* Fumiyuki Otsuka, MD,* Masataka Nakano, MD,* Marc Vorpahl, MD,* Saami K. Yazdani, PHD,* Elena Ladich, MD,* Frank D. Kolodgie, PHD,* Aloke V. Finn, MD,† Renu Virmani, MD*

	DES	BMS
Incidence	31%	16%
Median F/U time point	14 Mo	72 Mo
Neoatherosclero	eie in DES	is more

Neoatherosclerosis in DES is more frequent and occurs earlier

Journal of the American College of Cardiology © 2010 by the American College of Cardiology Foundation Published by Elsevier Inc.

CLINICAL RESEARCH

Vol. 55, No. 1, 2010 ISSN 0735-1097/10/\$36.00 doi:10.1016/j.jacc.2009.08.032

Interventional Cardiology

Appearance of Lipid-Laden Intima and Neovascularization **After Implantation of Bare-Metal Stents**

Extended Late-Phase Observation by Intracoronary Optical Coherence Tomography

Neointima transforms into lipid-laden atherosclerotic tissue in late phase after BMS

Lipid-laden intima frequently has intimal disruption, thrombi and neovascularization

Takano et al. J Am Coll Cardiol 2009;55:26-32

Early vs. Very late BMS-ISR

	Very late ISR	Early ISR
F/U duration	> 5 years	< 1year
MLA, mm ²	3.8±1.3	4.7±2.4
%IH area	58.6 ± 10.3	55.6 ± 13.4
Disrupted intima with cavity	18.6%	0%
Intraluminal material		
With shadowing	16.2%	0%
Without shadowing	4.7%	2.6%

Progression of atherosclerotic process within neointima may be associated with very late BMS-ISR

Habara et al. Circ Cardiovasc Interv 2011;4:232-8

OCT Findings of BMS-ISR at 10-Year F/U

IH is a general mechanism of 22 very late BMS-ISR requiring clinically-driven TLR (Median F/U time 10.7 years)

Lipidic neointima	100%
Calcium-containing	32%
Thickness of fibrous cap	50 μm (IQR 50–60 μm)
TCFA-containing neointima	68%
TCFA at MLA site	55%
Intimal disruption	86%
Neointimal rupture with cavity	59%
Thrombi	77%
Red thrombi	75% in UA vs. 30% in SA
All 3 findings (TCFA, intimal rupture and thrombi)	50%

AMC data

Medical Center

Different Timing of Neoatherosclerosis

Nakazawa et al. JACC Cariovasc Imaging 2009;2:625-8

Tissue Characterization of In-Stent Neointima Using Intravascular **Ultrasound Radiofrequency Data Analysis**

Soo-Jin Kang, MD^a, Gary S. Mintz, MD^b, Duk-Woo Park, MD^a, Seung-Whan Lee, MD^a, Young-Hak Kim, MD^a, Cheol Whan Lee, MD^a, Ki-Hoon Han, MD^a, Jae-Joong Kim, MD^a, Seong-Wook Park, MD^a, and Seung-Jung Park, MD^{a,*}

Kang SJ et al. AJC 2010 ;106:1561-5

Neointimal Composition at Various FU Time 117 ISR Lesions (BMS and DES) with %IH>50%

>36Mo (n=26)		52.2*	<mark>5.6</mark> *	27.2*	15.0*
	-				
24-36Mo (n=15)		54.9*	<mark>7.1</mark>	<mark>#</mark> 25.8 ³	12.2*
	-				
12-24Mo (n=12)		62.5		<mark>8.1</mark> 2	2.3 7.3 [#]
	-				
6-12Mo (n=42)		64.5		12.5	18.5 <mark>4</mark> .
	-				
<6Mo (n=22)		67.2		15 /	1462

Neoatherosclerosis degeneration increases intimal vulnerability with extended follow-up period

Kang SJ et al. AJC 2010 ;106:1561-5

M/68 Unstable angina 7YA s/p DES 2YA follow-up; patent

Optical Coherence Tomographic Analysis of In-Stent Neoatherosclerosis After Drug–Eluting Stent Implantation

Soo-Jin Kang, MD; Gary S. Mintz, MD; Takashi Akasaka, MD, PhD; Duk-Woo Park, MD, PhD; Jong-Young Lee, MD; Won-Jang Kim, MD; Seung-Whan Lee, MD, PhD; Young-Hak Kim, MD, PhD; Cheol Whan Lee. MD. PhD: Seong-Wook Park. MD. PhD: Seung-Jung Park. MD. PhD *Circulation 2011;123:2954-63*

In-Stent Neoatherosclerosis OCT Analysis in 50 DES-ISR Lesions with %IH>50%

	Total	Stable	Unstable	D
	N=50	N=30	N=20	
Follow-up (months)	32 (9-52)	14 (8-51)	41 (16-56)	0.178
Lipid neointima	45 (90%)	25 (83%)	20 (100%)	0.067
Fibrous cap thickness, µm	60 (50-162)	100 (60-205)	55 (42-105)	0.006
Incidence of thrombi	29 (58%)	13 (43%)	16 (80%)	0.010
Incidence of red thrombi	7 (14%)	1 (3%)	6 (30%)	0.012
Incidence of rupture	29 (58%)	14 (47%)	15 (75%)	0.044
Incidence of TCFA	26 (52%)	11 (37%)	15 (75%)	0.008
Neovascularization	30 (60%)	15 (50%)	15 (75%)	0.069

Kang et al. Circulation 2011;123:2954-63

DES Follow-up >20 Months Best Cut-Off to Predict **TCFA-Containing Neointima**

Kang et al. Circulation 2011;123:2954-63

Various size and extent of thrombi, the degree of flow-limiting obstruction and acuteness may determine the diversity

Comparison between OCT vs. VH-IVUS

To identify TCFA-containing neointima

- 78% agreement between VH-IVUS and OCT
- Using OCT as a gold standard, VH had a sensitivity 60%, specificity 94%, PPV 90% and NPV 73%
- The lesions with VH-TCFA containing neointima showed much thinner fibrous cap than the lesions without VH-TCFA (OCT-measured thickness 50µm vs. 120µm]

	OCT-defin	р	
	(+)		
%NC at the MLA	25.2% [8.6–30.0%]	4.7% [1.3–11.4%]	<0.001
Maximal %NC	33.2% [27.5–42.5%]	12.8% [6.0–24.2%]	<0.001
%DC	5.5% [2.4–8.5%]	0.6% [0.0–1.7%]	<0.001

Kang et al. Circulation 2011;123:2954-63

Evidences of Neoatherosclerosis As a Mechanism of **Very Late Stent thrombosis**

Cumulative Incidence of DES Thrombosis

Although the majority of DES showed good stent coverage with neointima beyond 1 year, a steady increase in late stent thrombosis (0.6% per year) have demonstrated thereafter

Daemen et al. Lancet 2007;369:667-78

Timing and Mechanism of **DES Thrombosis**

Early (<30d)	Late (1-12 Mo)	Very late (>12 Mo)
Procedural	Delayed healing	Abnormal vascular response
Underexpansion	Uncovered struts	Hypersensitivity
Edge dissection	Fibrin deposition	Extensive fibrin deposition
Residual plq rupture		Late malapposition?
Medial fracture		"Neoatherosclerosis"

Nakazawa et al. J Cardiol 2011;58:84-91

ASAN Medical Center

More Advanced Neoatherosclerosis TCFA-Containing Neointima Intimal rupture Thrombosis

"Unstable Neointima"
>5 years in BMS
≤2 years in DES

Although uncovered struts as a marker of incomplete endothelialization remains the primary cause of DES-VLST, neoatherosclerosis is added as another factor

Nakazawa et al. JACC 2011;57:1314-22

Journal of the American College of Cardiology © 2010 by the American College of Cardiology Foundation Published by Elsevier Inc.

Intravascular Ultrasound Findings in Patients With Very Late Stent Thrombosis After Either Drug-Eluting or Bare-Metal Stent Implantation

30 AMI with VLST (Mean F/U 33 Mo in DES, 108 Mo in BMS)

	DES	BMS
	(n=23)	(n=7)
Mean EEM CSA, mm ²	19.5±6.0	18.3±4.1
Mean Lumen CSA, mm ²	4.2±1.4	4.7±4.6
Mean Neointima, mm ²	3.0±1.1	5.0±1.7 *
Minimal stent CSA, mm ²	6.1±1.5	7.4±3.7
Neointima rupture	10 (44%)	7 (100%)*

Neoatheroclerosis may contribute to the development of VLST as a common mechanism in BMS and DES

71 Year-Old Female

- 8YA s/p BMS at mLAD
- 7YA diffuse ISR \rightarrow triple anti-platelet
- Resting chest pain \rightarrow New ST depression, V4-6

Different Mechanisms of DES-VLSTVLST of 34-month SESVLST 54-month SES

Ikenaga et al. JACC Cardiovasc Imaging 2011;4:1217-9

CardioVascular Research Foundation

In Vivo OCT of DES-VLST

Table 3. Details of VLST Cases

	Patient	Age (years)/	Duration	Lesion	Stent type	Procedure	Uncovered strut proportion		covered strut Malapposed strut proportion proportion		Lipid-laden-like neointima with
	110.	Gender	(uays)	location	(1111)	before oct	Strut (%)	Frame (%)	Strut (%)	Frame (%)	disruption
	1	61/M	829	LAD, Seg 7	SES, 2.5×33	Thrombectomy +POBA	20.8	64.5	23.5	58.1	()
	2	81/F	949	RCA, Seg 3	SES, 2.5×28	Thrombectomy +POBA	46.3	93.8	9.3	31.3	(-)
	3	67/F	987	LCX, Seg 13	SES, 2.5×28	Thrombectomy	2.2	10.0	0	0	(+)
	4	59/M	1,093	RCA, Seg 3	PES, 3.0×12	None	52.3	100	5.4	33.3	(-)
	5	60/M	1,497	LCX, Seg 13	SES, 2.5×28	None	48.5	100	5.4	32.0	(_)
_	6	70/M	1,340	LAD, Seg 7	SES, 2.5×18	Thrombectomy	4.9	15.8	0	0	(+)

Miyazaki et al. Circulation J 2011 (in press)

Diverse Clinical Features of Neoatherosclerosis

SUMMARY

In-stent neoatherosclerosis may be an important substrate for both in-stent restenosis and very late stent thrombosis especially in the extended phase

